(x^3+5x^2+6x+2)/(x+1)

Simple and best practice solution for (x^3+5x^2+6x+2)/(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^3+5x^2+6x+2)/(x+1) equation:


D( x )

x+1 = 0

x+1 = 0

x+1 = 0

x+1 = 0 // - 1

x = -1

x in (-oo:-1) U (-1:+oo)

(x^3+5*x^2+6*x+2)/(x+1) = 0

x^3+5*x^2+6*x+2 = 0

x^3+5*x^2+6*x+2 = 0

{ 1, -1, 2, -2 }

1

x = 1

x^3+5*x^2+6*x+2 = 14

1

-1

x = -1

x^3+5*x^2+6*x+2 = 0

-1

x+1

x^2+4*x+2

x^3+5*x^2+6*x+2

x+1

-x^3-x^2

4*x^2+6*x+2

-4*x^2-4*x

2*x+2

-2*x-2

0

x^2+4*x+2 = 0

DELTA = 4^2-(1*2*4)

DELTA = 8

DELTA > 0

x = (8^(1/2)-4)/(1*2) or x = (-8^(1/2)-4)/(1*2)

x = (2*2^(1/2)-4)/2 or x = (-2*2^(1/2)-4)/2

x in { (-2*2^(1/2)-4)/2, (2*2^(1/2)-4)/2, -1}

(x-((-2*2^(1/2)-4)/2))*(x-((2*2^(1/2)-4)/2))*(x+1) = 0

(x-((-2*2^(1/2)-4)/2))*(x-((2*2^(1/2)-4)/2)) = 0

( x-((-2*2^(1/2)-4)/2) )

x-((-2*2^(1/2)-4)/2) = 0 // + (-2*2^(1/2)-4)/2

x = (-2*2^(1/2)-4)/2

( x-((2*2^(1/2)-4)/2) )

x-((2*2^(1/2)-4)/2) = 0 // + (2*2^(1/2)-4)/2

x = (2*2^(1/2)-4)/2

x in { (-2*2^(1/2)-4)/2, (2*2^(1/2)-4)/2 }

See similar equations:

| 16n-52= | | 6+2b-6=16 | | x^2-13=-12x | | x(x+3)-5(x+3)=0 | | 25x+7-27x=6-7 | | 11(x-5)=-2-9 | | 4/3x+7=10 | | 3y-10+y+38=8y+30-6y | | 4916=165x+2771 | | 5A-3(A+2)= | | 5x^2+8x-4=x^2-2x+2 | | 37+7= | | abs(7x-6)+5=6 | | t=165(4916)+2771 | | (45-4(3)^2+2(7-1))/(1+2(3)) | | -8+15x=-3 | | -6x+2=8 | | lnx=3lne | | (24x^5+8x^4-16x^3)/8x^2 | | 0=5x^2+6x-1224 | | 6=6x^2-16x | | 5y^1+6y^2=4y^3 | | (1/x)+(1/x+4)=1/3 | | x/7=-11+30 | | X^10=3.01 | | 8x^2=8x-2 | | 0=-4x+5n | | 90+x+41=180 | | -1/2x+3=9 | | 4(t-5)-9=2(3t+1)+5 | | 10(5x-6)-9(2-8x)+7(-2x+3)=-8(9-10x) | | (3n^2-18n)/-9n^2 |

Equations solver categories